Warszawa z Gór Świętokrzyskich – jak to możliwe?

W maju 2023 r. po raz pierwszy została sfotografowana Warszawa z Gór Świętokrzyskich, z odległości ponad 150 km. Najpierw 22 maja Paweł Kłak zaobserwował światło iglicy Varso Tower, a potem 28 maja udało się udokumentować panoramę 11 najwyższych budowli w stolicy (Łukasz Wawrzyszko i Paweł Kłak), po czym dzień później powtórzył to Kamil Gołąb.

Panorama w kierunku Warszawy – fot. Łukasz Wawrzyszko 28.05.2023

Zdjęcia zostały szeroko udostępnione w internecie, po czym pojawiło się wiele sceptycznych komentarzy, podających w wątpliwość możliwość takiej obserwacji.

 

Czy taki widok jest możliwy mimo krzywizny Ziemi?

Oczywiście tak. Proste kalkulatory zakrzywienia Ziemi, używane do prób udowodnienia niemożliwości takiego widoku na kulistej planecie, nie uwzględniają ukształtowania terenu na linii obserwacji ani zjawisk optycznych związanych z propagacją światła w atmosferze.
Poniższa ilustracja przedstawia profil ukształtowania terenu pomiędzy Łysą Górą a Pałacem Kultury i Nauki, z uwzględnieniem krzywizny Ziemi. Dla lepszej czytelności wysokość została przedstawiona w większej skali niż odległość (zgodnie z oznaczeniami osi), dlatego zarówno rzeźba terenu, jak i krzywizna Ziemi są powiększone.

Profil terenu pomiędzy Pałacem Kultury i Nauki a Łysą Górą z zaznaczoną linią prostą pomiędzy tymi punktami
Ten sam profil, ale z zachowanymi proporcjami (oś pionowa i pozioma w tej samej skali). Wzniesienia terenu i krzywizna Ziemi są zbyt małe, by można by było je zobaczyć na takim profilu obejmującym odcinek 152 km. Jednemu kilometrowi odpowiada tu zaledwie 5 pikseli. Profil jest nieczytelny, dlatego stosuje się rozciągnięcie w pionie jak wyżej.

Brązowa linia jest to prosta linia biegnąca pomiędzy szczytem iglicy Pałacu Kultury i Nauki (wysokość 352 m n.p.m.) a obserwatorem pod szczytem Łysej Góry (584 m n.p.m.). Widać, że przecina ona teren znajdujący się po drodze – do widoczności brakuje bardzo dużo. Po linii prostej światło rozchodzi się jednak w próżni, a w niejednorodnym ośrodku, jakim jest ziemska atmosfera, jest inaczej. Im wyżej, tym ciśnienie atmosferyczne jest niższe, a powietrze ma mniejszą gęstość – a im rzadsze powietrze, tym mniejszy jest jego współczynnik załamania. Powietrze załamuje więc światło w taki sposób, że promienie światła zakrzywiają się w kierunku Ziemi (wypukłość krzywizny jest skierowana w kierunku mniejszego współczynnika załamania) – jest to zjawisko refrakcji atmosferycznej. Fizyczne i matematyczne szczegóły tego fenomenu są opisane na stronie Waltera Bislina.

W standardowych warunkach promień krzywizny linii widzenia jest ok. 7 razy większy niż promień krzywizny kuli ziemskiej. Określa się to za pomocą współczynnika refrakcji zdefiniowanego jako iloraz promienia Ziemi oraz promienia tej krzywizny – wynosi on ok. 0,14 i na ogół w ciągu dnia ulega niewielkim zmianom m.in. w zależności od temperatury powietrza.

Linia widzenia dla współczynnika refrakcji 0,14

Po uwzględnieniu standardowej refrakcji widoczność nadal nie jest możliwa. Linia powędrowała nieco wyżej, lecz brakuje kilkudziesięciu metrów, by wyszła powyżej terenu zasłaniającego widok.

W pogodne noce grunt szybko wypromieniowuje ciepło, a wraz z nim ochładza się przygruntowa warstwa powietrza. Staje się ona zimniejsza od powietrza położonego wyżej – powstaje radiacyjna inwersja temperatury. Chłodniejsze powietrze jest gęstsze i ma wyższy współczynnik załamania – w takich warunkach zmiany współczynnika załamania są zatem większe niż zwykle i to dość znacznie. W warstwie powietrza o grubości kilkudziesięciu metrów różnica temperatur może wynosić kilka stopni Celsjusza. Światło załamuje się wtedy kilkakrotnie silniej niż standardowo. Sprawdźmy więc przebieg linii widzenia dla współczynnika refrakcji 0,4 – około 3 razy większego niż standardowy.

Linia widzenia dla współczynnika refrakcji 0,4

Skąd wiadomo, że 28 maja 2023 r. wystąpiła taka inwersja? Jej obecność potwierdzają pomiary sondażowe atmosfery wykonane za pomocą balonu meteorologicznego – najbliższy pomiar był wykonany w Legionowie o godz. 2 w nocy.

Wykres temperatury powierza i temperatury punktu rosy w funkcji ciśnienia atmosferycznego i wysokości n.p.m. – dane pomiarowe z Legionowa z 28.05.2023, godz. 0 czasu UTC (2 CEST)
Wykres współczynnika refrakcji opracowany na podstawie powyższych danych z Legionowa. Linia ma charakter łamany ze względu na małą liczbę punktów pomiarowych – przedstawia średnie wartości współczynnika pomiędzy punktami. W rzeczywistości współczynnik refrakcji zmienia się płynnie, pomiędzy 104 a 146 m n.p.m. był z pewnością większy niż 1.

Inwersja temperatury w Legionowie wystąpiła w zakresie wysokości 104 – 203 m n.p.m., czyli ok. 10 – 110 m nad ziemią (prawdopodobnie sięgała nieco wyżej, gdyż na 203 i 228 m n.p.m. była identyczna temperatura). Nie mamy danych z linii Warszawa – Łysa Góra, więc nie da się określić dokładnego rozkładu tego współczynnika na linii obserwacji, ale warunki pogodowe były podobne, więc z pewnością również tam była inwersja. Linia widzenia tylko na części dystansu przechodziła przez warstwę inwersyjną, dlatego średni współczynnik refrakcji jest znacznie niższy niż maksymalne wartości. Najniższy widoczny na zdjęciach obiekt w Warszawie to światło na maszcie na budynku Centrum LIM, którego szczyt sięga 295 m n.p.m. Za pomocą opisanej tutaj metody można wyznaczyć minimalny średni współczynnik refrakcji, przy którym powinno być ono widoczne. Wynosi on ok. 0,44, więc co najmniej taka średnia jego wartość musiała wtedy wystąpić.

Obliczenia średniego współczynnika refrakcji wymaganego do widoczności masztu na Centrum LIM

Powyższe analizy zakładają uproszczenie polegające na uśrednieniu współczynnika refrakcji dla całej linii widzenia. W przypadku inwersji obejmującej niewielki zakres wysokości zmienność refrakcji jest jednak na tyle duża, że rzeczywista linia widzenia w istotnym stopniu odbiega od uproszczonej.
Przy pomocy specjalnego programu analizującego rozchodzenie się światła w atmosferze o określonym pionowym profilu temperatury można wyznaczyć linię widzenia w danych warunkach.
Poniższe wykresy zostały opracowane przez dr. hab. Krzysztofa Strasburgera w oparciu o pomiary z Legionowa – dokładny opis na jego stronie.

A jak wyglądałoby to, gdyby Ziemia była płaska?

Oczywiście można coś takiego zasymulować za pomocą dostępnych programów.

Symulacja linii widzenia dla braku krzywizny Ziemi i refrakcji atmosferycznej
Linia widzenia biegłaby na bardzo dużej wysokości nad ziemią, a to oznacza, że Pałac Kultury byłby widoczny praktycznie w całości. Byłoby widać znacznie więcej budynków czy kominów w Warszawie, w tym nawet zwykłe 10-piętrowe bloki. Nie chowałyby się one za horyzontem i nie byłaby do tego potrzebna refrakcja atmosferyczna. Oczywiście widok nie kończyłby się na Warszawie, Łodzi, Gdańsku czy nawet Morzu Bałtyckim… Jeśli nawet przejrzystość powietrza nie pozwoliłaby na tak rozległe panoramy, to np. na tle zachodzącego słońca, którego światło przebija się przez zamglenia, byłyby widoczne tereny oddalone o tysiące kilometrów. Panorama sięgałaby więc ogromnych odległości, ale… zejdźmy na Ziemię. Okrągłą, a właściwie geoidalną.
W rzeczywistości nawet pomimo zwiększonej refrakcji widzimy tylko światła, które są zamontowane w najwyższych punktach wysokich budynków. Cała reszta Warszawy jest schowana za horyzontem – właśnie ze względu na krzywiznę Ziemi.

 

Skąd wiadomo, że skupisko czerwonych punktów na horyzoncie to właśnie Warszawa?

Są one widoczne dokładnie w tych miejscach, gdzie powinny znajdować się najwyższe warszawskie budynki. Azymut każdego z nich dokładnie pasuje do położenia na zdjęciu. Można go wyznaczyć z dużą dokładnością w następujący sposób.

Po obu stronach Warszawy widać na zdjęciu wieże telefonii komórkowej z wyraźnymi czerwonymi światłami. Znając ich lokalizacje, można obliczyć azymuty do nich (np. kalkulatorem online).

Po lewej znajduje się wieża w Krogulczy Suchej (51,328411°N, 21,013814°E), a po prawej podobny obiekt w miejscowości Augustów (51,359309°N, 21,047798°E – nieoznaczony na mapie Google, ale widoczny na nowszej fotomapie w Geoportalu). Zdjęcie zostało zrobione z punktu 50,860833°N, 21,047528°E. Po wprowadzeniu współrzędnych do kalkulatora azymutów otrzymujemy azymuty: 357,420° do wieży w Krogulczy Suchej i 0,019° do Augustowa.

Następnie mierzymy poziomą odległość między wieżami na zdjęciu (w pikselach), dzielimy ją przez odległość kątową między nimi (różnicę azymutów) i otrzymujemy liczbę pikseli, jaka odpowiada na zdjęciu jednemu stopniowi kątowemu. Odległość na zdjęciu wynosi 4134 piksele, odległość kątowa to 360° – (357,420° – 0,019°) = 2,599°, a zatem jednemu stopniowi odpowiada na zdjęciu 4134 / 2,599 ≈ 1590,6 pikseli. Można teraz nanieść na zdjęcie podziałkę wyskalowaną w stopniach lub jego częściach (np. 0,1° co ok. 159 pikseli).

Taka podziałka ułatwia odczytanie azymutu do dowolnego obiektu – wystarczy zmierzyć, o ile pikseli jest oddalony w poziomie od najbliższej linii podziałki.

Pomiar azymutu do jednego z obiektów

Na powyższym zdjęciu pokazano pomiar azymutu do jednego ze świecących obiektów. Jest on położony o 57 pikseli w prawo od azymutu 358,7°, czyli na azymucie 358,7 + 57/159 = 358,738°.
Teraz wystarczy poprowadzić na mapie linię biegnącą w tym właśnie kierunku – umożliwia to np. strona udeuschle.de. Linia trafia dokładnie na wieżowiec Q22 w Warszawie. Jest to jedyny wysoki obiekt na tej linii, co można sprawdzić na mapie przeszkód lotniczych, zawierającej lokalizacje obiektów o wysokości co najmniej 100 m.

W ten sam sposób można zidentyfikować kolejne obiekty. Azymuty do nich obliczone wyżej wspomnianym kalkulatorem przedstawia tabela:

Obiekt Mapa Wysokość (m n.p.m.) Azymut (°) Odległość (km)
Widok z punktu 50,860972°N, 21,047500°E
Warsaw Trade Tower https://goo.gl/maps/XybUH5vUKPYWNpQE8 319 358,342 152,9
Skyliner https://goo.gl/maps/AhaBtLGHfPhFWfx9A 307 358,359 152,3
Warsaw Spire https://goo.gl/maps/Tj1ELZChwgVuBGm29 331 358,377 152,5
Warsaw Unit https://goo.gl/maps/DND4F6zQa2B4d4PD7 316 358,429 152,3
Q22 https://goo.gl/maps/5tF4xpnSAhcZ7oLfA 309 358,738 152,9
Rondo 1 https://goo.gl/maps/3CLtGnEQv5ADWbW66 306 358,775 152,6
Varso Tower https://goo.gl/maps/pPcJMCstWBwEekMC7 424 358,787 152,1
Złota 44 https://goo.gl/maps/4iWXAWfTY2izz5q67 306 358,841 152,4
Centrum LIM https://goo.gl/maps/fZWhzx9LNFKasS9u6 295 358,902 152
Pałac Kultury i Nauki https://goo.gl/maps/xQCPjmHgCvMDv7LG7 352 358,942 152,5
Widok z punktu 50,860768°N, 21,047419°E
komin Ciepłowni Kawęczyn https://goo.gl/maps/s8LuZck61sZdt4JK8 392 2,028 156,6

Skąd jednak wiemy, że wyżej wymienione wieże telekomunikacyjne znajdują się właśnie tam? One również zostały sprawdzone w ten sam sposób – na szerszym zdjęciu, gdzie objęły się inne obiekty możliwe do rozpoznania po ich kształcie i położeniu. Po prawej widać Starachowice, których nie sposób pomylić z innym miastem, a po lewej jest charakterystyczny komin dawnej Cementowni Wierzbica (można by było go zidentyfikować np. względem Farmy Wiatrowej Szerzawy znajdującej się bardziej po lewej).

Czy w takim razie nie są to inne obiekty, które znajdują się na azymucie Warszawy, ale bliżej?
Nie ma w tym zakresie azymutów innego skupiska obiektów oznakowanych takimi światłami, które wystawałyby nad horyzontem wyżej niż Warszawa. Teoretycznie gdyby nawet były, to musiałyby być rozmieszczone dokładnie tak samo, jak wieżowce, co byłoby skrajnie mało prawdopodobne.

 

Subskrybuj
Powiadom o
guest
19 komentarzy
najstarszy
najnowszy oceniany
Inline Feedbacks
Zpobacz wszystkie komentarze
Krzysiek_S
Krzysiek_S
1 rok temu

Świetnie wytłumaczone. Dodam jeszcze, że obliczenia z uśrednionym (ale stałym) współczynnikiem refrakcji nie oddają w pełni warunków tej obserwacji. Obecność warstwy powietrza ze współczynnikiem refrakcji powyżej 1 powoduje, że teoretycznie można zobaczyć wszystko, co wystaje powyżej tej warstwy, dowolnie daleko. Oczywiście w rzeczywistości nie ma tak dobrze, bo po pierwsze, światło ulega rozproszeniu na aerozolach, których zawsze trochę jest, a nawet na cząsteczkach gazów, z których składa się powietrze, a po drugie – warstwa powietrza o tak atrakcyjnych cechach nie jest jednorodna i ma ograniczoną rozciągłość. No, ale wystarczyło i to przez kilka nocy pod koniec maja!

Krzysiek_S
Krzysiek_S
1 rok temu

Wystarczy wziąć obliczoną zależność współczynnika refrakcji od wysokości, przybliżoną jakąś gładką funkcją i wyznaczyć przebieg linii widzenia. Ja właśnie tak robię – zamiast odtwarzać coś na podstawie zdjęcia, patrzę, co wychodzi z obliczeń i jak ma się to do zdjęcia.
Przybliżenie „wszędzie taki sam pionowy profil współczynnika refrakcji” jest na pewno dokładniejsze od „wszędzie taki sam współczynnik refrakcji, nie zależący od wysokości”, choc oczywiście pozostaje przybliżeniem. Na pewno wychodzi w nim spłaszczenie obrazu.

Krzysiek_S
Krzysiek_S
1 rok temu
Odpowiedź do  Dalekie Horyzonty

No cóż, trzeba będzie to sprawdzić „w praniu”. Czy wiadomo, jaką wysokość mają maszty w Krogulczy Suchej i w Zabierzowie? Teren w obu miejscach jest na podobnej wysokości, 200 m n.p.m.

Krzysiek_S
Krzysiek_S
1 rok temu
Odpowiedź do  Dalekie Horyzonty

Pierwszy krok zrobiony. Azymuty potwierdzone, wszystko pod tym względem pasuje, ale dalej nie ruszę bez jakichś wysokościowych punktów odniesienia. Maszty to jedno, a jescze lepsze byłoby coś położonego możliwie blisko. Na prawie tym samym azymucie, co maszt w Zabierzowie, jest jasno świetlony obiekt, znacznie niżej. Wieża kościelna?

Krzysiek_S
Krzysiek_S
1 rok temu
Odpowiedź do  Krzysiek_S

Też go namierzyłem. To kościół pod wezwaniem św. Brata Alberta. Wieża na zdjęciach, znalezionych w internecie, wygląda na nie wyższą niż 30 m.

Krzysiek_S
Krzysiek_S
1 rok temu
Odpowiedź do  Krzysiek_S

Czyli 40 m. Obu masztom też dałem po 40 m, bo to dość częsta wysokość tego typu konstrukcji.
Cały pionowy profil temperatury podniosłem o 50 m – Legionowo leży faktycznie nisko, a nas interesuje raczej teren gdzieś koło Grójca, gdzie linia widzenia najbardziej zbliża się do gruntu. No i coś sensownego powychodziło, ale o tym już kiedy indziej. Północ blisko i idę spać. Dobranoc :-).

Krzysiek_S
Krzysiek_S
1 rok temu
Odpowiedź do  Krzysiek_S

Wydawało mi się, że grunt jest 10 metrów niżej. Coś źle odczytałem. Ale to nic, bo i tak ważny jest czubek wieży, a ten ustawiłem na 270 m n.p.m. Na razie wystawiam tylko wyprodukowany wczoraj opis, naniesiony na zdjęcie „azymuty”:
Link powinien pokazać się w podpisie, w polu „witryna internetowa”.

Krzysiek_S
Krzysiek_S
1 rok temu
Odpowiedź do  Krzysiek_S

Napisałem rano komentarz. W polu „witryna internetowa” umieściłem link do wyprodukowanego wczoraj wieczorem opisu, co okazało się krokiem niewłaściwym. Algorytm nie przepuścił i treść albo gdzieś „wisi”, albo została w ogóle usunięta. Bardzo proszę sprawdzić i jeśli jest, to udostępnić.
Gdy będę znowu miał trochę czasu, to zrobię jeszcze obliczenia linii widzenia.

Krzysiek_S
Krzysiek_S
1 rok temu
Odpowiedź do  Krzysiek_S

Dziękuję. Tymi przesunięciami w ogóle bym się nie przejmował. Moim zdaniem mieszczą się w dopuszczalnych granicach błędu.
Współrzędne wziąłem… cóż, poszedłem na łatwiznę i ordynarnie je spisałem z bieżącego artykułu. Z początku trochę mnie zaniepokoiło, że Varso Tower, a zwłaszcza Złota 44, „trafiają” pomiędzy światła, ale potem zobaczyłem, że w Waszych (liczę Pawła Kłaka, stąd liczba mnoga) materiałach podpisy tych dwóch wieżowców też rozciagają się nieco szerzej.
W przyszłości, odnośniki będę raczej umieszczał w treści komentarza – może wtedy algorytm się nie wkurzy.

Krzysiek_S
Krzysiek_S
1 rok temu
Odpowiedź do  Krzysiek_S

Wczoraj wieczorem zrobiłem obliczenia i wykresy. Uśredniony współczynnik refrakcji może nadaje się do wyciagnięcia czegoś zza horyzontu, w symulatorze Ulricha, ale poza tym jest zupełnie nierealistyczny!
http://chkw386.ch.pwr.wroc.pl/~strasbur/widoki/LysaGora-Warszawa/widok_Warszawy.html

Paweł Kłak
1 rok temu

@KrzysiekS Bardzo dobra i trafna analiza na stronie
http://chkw386.ch.pwr.wroc.pl/~strasbur/widoki/LysaGora-Warszawa/widok_Warszawy.html
W pełni zgadzam się z tekstem. Szczególnie istotne jest to zdanie „” światła położone na wysokościach różniących się o około 50 m zdają się leżeć na jednym poziomie. Tylko najwyższy budynek Varso Tower góruje nad nimi, jednak nie tak bardzo, jak wynikałoby z rzeczywistej przewagi wysokości””
Ten sam efekt „spłaszczenia” widać było na zdjęciach masztu w Raszynie – widoczne jest chyba 5 świateł które w rzeczywistości dzieli około kilkadziesiąt metrów a na zdjęciu zostały „spłaszczone” , tak , że po obliczeniu rozmiaru kątowego widocznej części masztu na zdjęciu – maszt „skurczył się” wskutek „zanurzenia się” w warstwie inwersyjnej.
Podobne przemyślenia mieliśmy po obserwacji oraz po analizie „uśrednionego współczynnika” refrakcji dla Varso oraz PKiN.
Wartość dla tych obiektów znacznie się różniła (bodajże 0,4 i 0,44) , przeliczenie rozmiarów kątowych widocznych obiektów i porównanie z rzeczywistymi
różnicami w wysokości budynków sugerowało że Varso jest „spłaszczone”.
Ta warstwa inwersyjna „pływała” co widać np, na GIFie umieszczonym na dalekiewidoki.pl .
O ile wystąpienie samej inwersji można przewidzieć np. wykorzystując narzędzia radiosondaży w aplikacji WIndy , tak praktycznie niemożliwym jest przewidzenie „skali” , „grubości” i intensywności tej inwersji na konkretnym obszarze lub w konkretnym punkcie.
Oczywistym jest , że refrakcja jest zmienna w czasie na różnej wysokości i nie można jej zamknąć w uśrednionym współczynniku.
Uśredniony współczynnik refrakcji nie oddaje dynamiki refrakcji na całej linii widzenia.
Natomiast mimo jego „niedoskonałości” i nie mając innych narzędzi jest pomocny np. w teoretycznym analizowaniu możliwości obserwacji.
Idealnie byłoby stworzenie programu ,w którym wskazujesz plik z danymi z sondażu, współrzędne początku i końca linii obserwacji, zdjęcie i dostajesz wynik.
Zapewne większość z tych fukcjonalności robi Twój program , ale obawiam się , że poza Tobą nikt go jeszcze nie rozgryzł 🙂 Może jakiś update na nowsze systemy? – ubuntu, win10 ? 🙂
Pozdrawiam serdecznie.